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Abstract. Collisionless absorption of linearly polarized electromagnetic wave in a plasma with anisotropic
bi-Maxwellian electron velocity distribution is investigated. Due to the wave magnetic field influence on
the electron kinetics in the skin layer, the wave absorption is found to significantly depend on the degree
of the electron temperature anisotropy. Depending on the value of the skin layer anomaly parameter, and
on the electron temperature anisotropy degree, the conditions are found when a significant decrease or
increase of the collisionless absorption is expected.

PACS. 52.40.-w Plasma interactions (nonlaser) – 52.50.Jm Plasma production and heating by laser beams
(laser-foil, laser-cluster, etc.)

1 Introduction

As a result of gas ionization by a powerful ultra-short laser
pulse a plasma is formed exhibiting a strongly anisotropic
photoelectron distribution over velocities (see, for in-
stance [1–4]). In particular, in the regime of tunnel ion-
ization the photoelectron distribution function is found to
be close to an anisotropic bi-Maxwellian distribution [2].
Further, a qualitatively similar electron distribution func-
tion (EDF) is formed as a result of electron heating by a
strong laser field through inverse bremsstrahlung [5,6]. Af-
ter the plasma electron-laser interaction, the newly formed
nonequilibrium EDF lasts for times of the order of ν−1

e , νe

being the effective electron collision frequency, or for times
typical of the pertinent plasma instabilities development.
One of such instabilities, limiting the existence time of the
photoelectron nonequilibrium distribution, is the Weibel
instability [7–10]. In any case, such nonequilibrium EDF
corresponds to a plasma state with new physical prop-
erties. One of the peculiarities of such a plasma state is
the significant anisotropy of its physical characteristics.
For instance, as shown in [11], in such a plasma state a
strong anisotropy of the collisional absorption of laser ra-
diation takes place. In this paper, for this kind of plasma
we investigate the peculiar features of the collisionless ab-
sorption when the skin-effect occurs. More precisely, below
we investigate the absorption of a test linearly polarized
field impinging normally on the surface of a plasma ex-
hibiting an anisotropic bi-Maxwellian EDF, the test field
frequency ω being much smaller than the electron plasma
frequency ωL. We take that the EDF symmetry axis lies
in the plane coplanar to the plasma surface. With such
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a choice the absorption coefficient of the incident wave is
determined by two components of the surface impedance,
one of the two’s significantly depending on the degree of
anisotropy of the electron temperature. In Section 2 we
derive the expressions of the surface impedance compo-
nents and of the absorption coefficient. In Sections 3 and 4
we analyze analytically and numerically how the derived
expressions depend on the parameter δ = vTωL/ωc, char-
acterizing the degree of the skin effect anomaly, and on
the parameter ∆ = 1 − Tx/T⊥, giving the electron tem-
perature anisotropy degree. vT, c, Tx and T⊥, appearing
in δ and ∆, are, respectively, the electron thermal velocity
along the normal to the plasma surface; the speed of light;
and the two plasma effective temperatures. We show that
in an anisotropic plasma are possible both the decrease
and the increase of absorption as compared to the case
of an isotropic plasma. When ∆ > 0, for any value of
δ, a relative decrease of absorption is found. On the con-
trary, when ∆ < 0 and δ < max(|∆|−1/6, |∆|−3/2), we find
a significant increase of absorption of radiation with the
polarization vector forming a small angle with the EDF
symmetry axis. For all the other values of δ and ∆ < 0 the
anisotropy yields a decrease of absorption. The reported
results are a consequence of the influence of the wave mag-
netic field on the electron kinetics in the skin layer.

2 Impedance of an anisotropic plasma

Let us investigate a plasma with the bi-Maxwellian EDF
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with N the electron density, m the electron mass, and
the two effective temperatures Tx and T⊥ given in energy
units. EDF’s like (1) are formed either as a result of tunnel
ionization of atoms [2], or of electron heating through non-
linear inverse bremsstrahlung absorption [5,6]. Besides,
such EDF’s sometimes are used to model anisotropy ef-
fects due to nonuniformity of electron temperature [12,13].

Let us assume that the plasma occupies the half-space
z > 0, and consider the interaction of such a plasma with
a weak linearly polarized electromagnetic wave, impinging
normally on the plasma surface

E cos(ωt− kz), z < 0, (2)

with E = (Ex, Ey, 0) = E(cosφ, sinφ, 0), φ the angle
between the electric field polarization direction E and
the Ox-axis; ω and k the frequency and wave number
of the e.m. wave, ω = kc. The wave frequency ω is as-
sumed much smaller than the electron plasma frequency
ωL =

√
4πe2N/m, where e is the electron charge. The

wave (2) is reflected by the plasma surface and partially
penetrates into the plasma, where it is absorbed as a re-
sult of interaction with the electrons. Being interested in
the field inside the plasma, we will consider such physical
conditions, when the influence of electron collisions may
be completely neglected. Collisions may be disregarded in
a sufficiently hot and not very dense plasma, in partic-
ular when are realized the conditions corresponding ei-
ther to the high-frequency or to the anomalous skin effect
(see, for instance [12–17]). Further, we consider the sim-
plest boundary conditions on the plasma surface. Namely,
we assume that electrons are specularly reflected by the
plasma boundary. Provided these conditions are fulfilled,
following the traditional approach to treat the skin ef-
fect [18,19], it is not a difficult task to find the plasma
impedance. In the geometry of interaction chosen here,
only two components of the impedance are important.
One is Zx, which describes the reflection and absorption
of the Ex component; the other is Zy, which defines the
response to the Ey component. The quantities Zx(y) are
related to the corresponding components of the plasma
dielectric permettivity εx(y) through the expressions

Zx(y) = −2i
π
k

∫ ∞
0

dq
q2 − k2εx(y)(q)

· (3)

When the electrons have a velocity distribution like (1),
the functions εx(y)(q) are given by

εy(q) = 1− ω2
L
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)
, (4)
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where vT =
√
T⊥/m, ∆ = 1−Tx/T⊥, and the function J+

has the form [20,21]

J+(x) = J ′+(x) + iJ ′′+(x), (6)
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The differences in the functions εx and εy are due to the
presence of the parameter ∆, characterizing the degree of
anisotropy of the electron temperatures. The impedance
components (3) determine the reflection and absorption
coefficients R and A of a plasma with the anisotropic bi-
Maxwellian EDF (1) according to the relations

Rx(y) =

(
Zx(y) − 1

)(
Zx(y) + 1

) , (9)

R = |Rx|2 cos2 φ+ |Ry|2 sin2 φ, (10)
A = 1−R. (11)

Under the conditions considered here, the absolute values
of the real and imaginary parts Z ′x(y) and Z ′′x(y) of the cor-
responding impedance components Zx(y) = Z ′x(y) + iZ ′′x(y)

are much smaller than unity. It allows to write the ap-
proximate expression of the absorption coefficient (11),

A = 4Z ′x cos2 φ+ 4Z ′y sin2 φ. (12)

The absorption coefficient (12) has been obtained under
the assumption that the electron collision frequency, in-
cluding both electron-electron and electron-ion collisions,
is negligibly small. The departure of A from zero is due
to Landau collisionless absorption. From (12) it can be
seen that to describe how the absorption coefficient de-
pends on the plasma and radiation field parameters it is
sufficient to give the corresponding description of the real
parts of the impedance components (3). Before report-
ing on the results of our investigation, a general remark
on the physical nature of the absorption properties of an
anisotropic plasma is appropriate. The basic reason of the
new absorption properties is to be traced back to the fact
that when investigating the electron motion in the skin
layer in a plasma with anisotropic EDF, together with the
electric field of the incident wave, it is necessary to take
into account its magnetic field as well. Thanks to the fact
that the magnetic field in the skin layer is considerably
larger than the electric field, the influence of the former
on the electron motion results much more significant even
when the electrons have nonrelativistic temperatures. Un-
der the influence of the magnetic field an important ex-
change of energy among the electron degrees of freedom
takes place, which ultimately explains why the tempera-
ture anisotropy is able to influence the properties of the
collisionles Landau damping.

3 Collisionless absorption. Analytical results

Let us consider now the characteristic features of collision-
less absorption in different limiting cases, and report the
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results of numerical calculations of the impedance com-
ponents real parts and of the absorption coefficient. With
this aim, let us write the expression for the real part Z ′x
in the form

Z ′x =
2
π
δΩ

∫ ∞
0

dx
Im(x)[

Re2(x) + Im2(x)
] , (13)

Im(x) =
√
π

2
(1−∆) δ2x3 exp
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)
, (14)

Re(x) = 1 + x2δ2

[
∆+ (1−∆) x exp

(
−x

2

2

)
×
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0

dt exp
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)]
, (15)

with δ the parameter characterizing the degree of the skin
effect anomaly in a plasma with a Maxwellian EDF de-
fined in the introduction; Ω = ω/ωL � 1. In writing
down (15), it has been taken into account that Ω � 1
and Ωδ = vT/c � 1. The expression for Z ′y follows
from (13–15), disregarding the electron temperatures dif-
ferences and letting ∆ = 0.

3.1 Limiting cases for Z′y

We start our analysis considering first the simpler func-
tion Z ′y. We report Z ′y for the two limiting cases of small
and large values of the anomaly parameter δ. For ∆ = 0
and δ � 1, in (13) we can neglect the departure of
Re(x) (15) from unity, while in the denominator of (13)
we omit Im(x). Thus, from (13) and (14) we find

Z ′y =

√
8
π
Ωδ3, δ � 1. (16)

If δ � 1, when ∆ = 0 the main contribution to the inte-
gral (13) comes from x ' δ−2/3 � 1. It allows to neglect
the departure of Re(x) (15) from unity. Then, from (13)
and (14) we have

Z ′y =
2

3
√

3

(
2
π

)1/6

Ωδ1/3, δ � 1. (17)

3.2 Limiting cases for Z′x

Let us now analyze the function Z ′x. The calculation of
Z ′x is particularly simple when δ � 1. When it takes place
and additionally (1−∆)δ2 � 1, neglecting the departure
of Re(x) from unity and the small function Im(x) in the
denominator (13), we find

Z ′x =

√
8
π
Ωδ3(1−∆), δ � 1, δ

√
1−∆� 1. (18)

As before, when δ � 1 but the electron tempera-
ture anisotropy degree is high, such that ∆ < 0 and
δ
√
|∆| � 1, the main contribution to Z ′x (13) comes from

x ' 1/(δ
√
|∆|)� 1. Taking it into account, from (13–15)

approximately we have
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√

2
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2
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, δ � 1, ∆ < 0, δ
√
|∆| � 1. (19)

We note that when δ � 1, the number of possible limiting
cases is greater than when the reverse inequality takes
place. In particular, when 1−∆ � 1, which corresponds
to T⊥ � Tx, neglecting in the denominator of (13) the
small corrections proportional to (1 −∆), approximately
we have
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δ � 1, 1−∆� 1, (20)

where C ' 0.577 is the Euler constant. As ∆ is decreased,
the conditions of absorption change. If ∆ is within the
interval δ−2/3 � ∆ � 1, instead of (20) for Z ′x another
asymptotic expression is obtained. In such conditions it is
possible to disregard the dependency of Im(x) (14), on ∆
and the main contribution to the integral (13) comes from
x values not greater than δ−2/3 � 1. For such small values
of x it is allowed to approximate Re(x) by 1 +∆δ2x2. As
a result we may write (13) in the form
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δ−2/3 � ∆� 1. (21)

From (21) containing the integral, one may also see that
when |∆| � δ−2/3 the real part of the impedance com-
ponent Z ′x is described by the same expression (17) as
Z ′y, which corresponds to the anomalous skin-effect in a
plasma with an isotropic Maxwellian EDF, but with small
correction proportional to ∆δ2/3,

Z ′x =
2

3
√

3

(
2
π

)1/6

Ωδ1/3

[
1−
√

3
π
∆δ2/3

]
,

1� δ−2/3 � |∆|. (22)

For negative values of the temperature anisotropy param-
eter, smaller than those considered before, and such that
∆ < 0 and |∆| � δ−2/3, the main contribution to the
integral (13) comes from x values around 1/(δ

√
|∆|)� 1,

and it allows to use the approximate expression Re(x) '
1 + ∆δ2x2. As a result, from (13–15) approximately
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Fig. 1. The real part of the impedance component Z′x versus
∆ = 1 − Tx/T⊥ the degree of temperature anisotropy. The
different curves correspond to three values of the parameter
δ = vTωL/ωc characterizing the degree of skin-effect anomaly:
δ = 0.3, 1, 3. Ω = ω/ωL = 0.1.

we find

Z ′x '
√

2
π

∫ ∞
0

(1−∆)Ωδ3x3

(1 +∆x2δ2)2 + (1−∆)2δ4x6 π
2

dx

' Ω√
|∆|

, ∆ < 0, |∆| � δ−2/3, δ � 1. (23)

The asymptotic expression (23) coincides with the expres-
sion (19) derived above, but has a different domain of ap-
plicability. Altogether the asymptotic expressions (16–23)
allow to understand the behavior of the functions Z ′x and
Z ′y in all the limiting situations of physical interest. They
are also useful for comparisons with the results of the nu-
merical calculations to be reported below.

4 Numerical results

In Figure 1 we report results of numerical calculations of
the real part of the impedance component Z ′x as a func-
tion of ∆ = 1 − Tx/T⊥. The curves are calculated for
Ω = ω/ωL = 0.1 and three values of the anomaly param-
eter δ = vTωL/ωc = 0.3; 1; 3. The behavior of the curve
with δ = 0.3 correspond to that of the asymptotic ex-
pression (18). The asymptotic expressions (18, 19) allow
also to qualitatively understand the behavior of the curve
with δ = 1. In particular, the component Z ′x reaches the
maximum at the boundary where the asymptotic expres-
sions (18, 19) join; namely at |∆| ∼ δ−2. Finally, the be-
havior of the curve with δ = 3 is explained by the group
of asymptotic expressions (20–23). For δ = 3 the func-
tion Z ′x reaches its maximum in the interval |∆| ≤ δ−2/3.
The absolute value of Z ′x maximum is close to that of an
isotropic plasma.

In Figure 2 we report the curves of the function Z ′x
versus δ. The curves are calculated for Ω = 0.1 and three
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Fig. 2. The same function as in Figure 1, but versus δ for three
values of the parameter ∆: 0.75 (T⊥ = 4Tx); 0 (T⊥ = Tx); −4
(Tx = 5T⊥); Ω = ω/ωL = 0.1.

values of the temperature anisotropy parameter ∆: 0.75
(T⊥ = 4Tx); 0 (T⊥ = Tx); and −4 (Tx = 5T⊥). The curve
with ∆ = 0 corresponds to an isotropic plasma and de-
scribes also the behavior of the function Z ′y. Its behav-
ior corresponds also to the well known dependencies (16)
and (17). From Figure 2 we see that the component Z ′x
at ∆ = 0.75 is considerably smaller then at ∆ = 0. The
behavior of the curve at ∆ = 0.75 and small δ corresponds
to the expression (18), while for large δ corresponds to the
expression (20). The curve with ∆ = −4 (Tx = 5T⊥) for
large δ lies below the curve with ∆ = 0, while for small
δ it shows a significant relative increase of the Z ′x compo-
nent. Such a behavior of Z ′x follows from the asymptotic
expressions (18, 19, 23) as well.

In Figures 3a and 3b we report the results of calcula-
tions of the collisionless absorption coefficient A (12), as a
function of the angle φ, formed by the polarization vector
of the absorbed wave with the EDF symmetry axis. Fig-
ure 3a shows the curves corresponding to δ = 9 and three
values of the anisotropy parameter ∆ = −4 (Tx = 5T⊥); 0
(Tx = T⊥); and 0.75 (T⊥ = 4Tx). According to Figure 3a,
for the chosen plasma and laser parameters, a relative de-
crease of absorption takes place as compared with the case
of an isotropic plasma. Besides, the absorption coefficient
in a plasma with ∆ 6= 0, is found to grow monotonously
with the angle φ increase. The dependencies of A vs. φ,
for δ = 0.3 and the same values of ∆ as in Figure 3a, are
shown in Figure 3b. We note that the curve with ∆ = 0.75
is qualitatively similar to the corresponding curve of Fig-
ure 3a. A different behavior, instead, is shown by the curve
with ∆ = −4 (Tz = 5T⊥). In fact, at variance with the
curve of Figure 3a, a significant increase of absorption in
an anisotropic plasma is observed. The dependency of A
on the angle φ changes as well. For δ = 0.3 and ∆ = −4
the absorption maximum occurs at φ = 0, when the wave
field is polarized along the EDF symmetry axis.
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Fig. 3. (a) Collisionless absorption coefficient A versus φ the
angle between the polarization vector of the e.m. wave and
the EDF symmetry axis, in a plasma with δ = 9 and for three
values of the temperature anisotropy parameter ∆ = −4 (Tx =
5T⊥); 0 (T⊥ = Tx); 0.75 (T⊥ = 4Tx). (b) The same function as
in (a), but for δ = 0.3.

5 Conclusions

We have investigated, analytically and numerically, for
wide intervals of the pertinent physical parameters, the
basic properties of the collisionless absorption of linearly
polarized radiation by a plasma possessing an anisotropic
bi-Maxwellian electron velocity distribution function. The
reported results show significant differences as compared
with the case of plasma with an isotropic EDF. The phys-
ical reason, to which the differences are to be traced
back, is that in the conditions of an anisotropic EDF one
needs to take into account the magnetic field influence on
the electron kinetics inside the skin-layer. The absorption
properties established above have been obtained using a

relatively simple model concerning the sharpness of the
plasma boundary and the mirror-like character of electron
reflection. They may serve as basis of further investiga-
tions, concerning more involved conditions of interaction
of probe waves with highly nonequilibrium anisotropic
plasmas, and may be subjected to verification in relatively
simple experiments.
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